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LETTER TO THE EDITOR 

Loop mediated crossover in the three-dimensional Ising model 

Somendra M Bhattacharjeet and Sutapa Mukherjiz 
Institute of Physics, Bhubaneswar 751005, India 

Received 2 February 1993 

Absbnd. We establish the existence of crossover from a three (or any) dimensional Ising 
model to the anisotropic five vertex model by suppressing closed loops in the isomoFphic 
dimer problem. The crossover exponent is determined exactly using a renormalization 
group approach. 

The two-dimensional Ising model has a crossover phenomenon lurking in the wings. 
This crossover in the critical behaviour changes, e.g. the weak logarithmic divergence 
of the specific heat to a square root divergence (a =$) of the vertex or K-model type. 
This is known from exact solutions. It is most easily seen by taking a certain limit of 
the coupling constant of the triangular lattice model [l], or, more directly, for the 
hexagonal lattice, by suppressing loop type excitations in the isomorphic dimer model 
[2]. The domain wall mapping of [2] makes it clear that the crossover is mediated by 
closed loops. In their absence, one would get only lines in one particular direction, 
spanning the whole lattice. It is these fluctuating domain walls that drive the critical 
behaviour of the K-model. (See, e.g. [3,4] for connection of this with commensurate- 
incommensurate transitions.) A natural question then arises: is this crossover via the 
loops special to two dimensions or generic to the king model in any dimension? This 
question primarily motivated this study. And, yes, we find it to be generi-ven the 
crossover can be studied quantitatively if not exactly. 

We employ a combination of lattice and continuum approaches to tackle the 
question posed above. The lattice approach, via the high temperature expansion, 
establishes the loop mediated crossover. The details of the crossover, the crossover 
exponent, etc, are then obtained by the continuum path integral technique using 
renormalization group (RG). 

Lattice model. The key point is to find out a generalization of the two-dimensional 
hexagonal lattice. But, then, universality tells us that every minute detail of the lattice 
is not important for the universal exponents. 

We start with the Ising model on an expanded diamond lattice in the 110 orientation 
(figure 1). The reason for choosing the diamond lattice in this particular orientation 
is the speciality of sequential arrangements of the bonds in the transverse directions 
(x,, x,, . . . , x + ~ )  as we move along the special x d ( - z )  direction. The lattice is further 
expanded by splitting each vertex and inserting a new bond, parallel to the special z 
direction (figure 1). Needless to say that such lattices can be constructed in any arbitraly 

t E-mail: sb%iopb@shakIi.emet.in. 
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Figure 1. ( a )  The diamond lattice in the 110 orientation, (bj Expanding the lattice by 
inserting a bond at each vertex. (c) and (d) XD, the dimer lattice, with dimer aaivitia 
(Fisher transformation). Sites of type (c) [ ( d j ]  are the birth (death) sites for the polymers. 
See 121. (e) Reduction of XD to X for v = 0. 

dimension d. At each vertex there will be a bond in the xd(=z)  direction and two 
bonds in one of the remaining d - 1 transverse directions with the transverse bonds 
arranged sequentially. We denote any such lattice by 3. 

The king model is defined on this three coordinated lattice 9 by the Hamiltonian 
H/kT=-KZs i s j  where k is the Boltzmann constant, T the temperature, $;=+I are 
the spins situated on the vertices of 2, and the sum is over the nearest neighbours 
only, and K > 0. 

The standard Fisher mapping [SI transforms the tangent hyperbolic expansion for 
the king partition function on a three coordinated lattice 2 to a dimer covering 
prohlemt on ZD. The dimer lattice ZD is obtained by replacing each vertex of 3 by 
a triangle (see figure 1). The dimer activities on the edges ofthe triangle are U = tanh K, 
and one on other edges. The dimer partition function is .&=E g(n)u" where g(n) is 
the number of configurations with n dimers on the edges of the triangles. This mapping 
is local and is valid for any graph. Still, it has, so far, been mainly used for planar 
lattices for which the dimer problem can be solved exactly by the Pfaffian technique 
[4]. Nevertheless, this transformation is essential for the present formulation, 

Following [Z], we now change one dimer activity (figure 1) to U. The king model, 
then, corresponds to the U = U case. In the ground state, the dimers occupy the edges 
with activity one. The excited states are obtained by transferring dimers on the high 
energy bonds, thereby vacating the ground state bonds. The vacant ground state bonds 
can be connected uniquely to get lines or polymers or 'domain walls'. These polymers 
in one particular direction (commonly called directed polymers) are mutually avoiding 
(to respect the hard core constraint of the dimers), and either span the whole lattice 
in the preferred direction or terminate pairwise at a triangle if a U type edge is occupied. 
In other words, identical to the two-dimensional case [2], there are line type excitations 
that require an infinite energy (with macroscopic entropy), and there are finite energy 

t In a dimer model, each site is occupied by one, and only one, dimer that sits on a bond connecting the 
nearest neighbours. See, e.g. [4]. 
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excitations involving two polymers that start from a U type dimer (figure l(c)) and 
end in a U type dimer (figure l(d)) with mutual avoidance inbetween. These tragic 
reunion points will be termed dislocations. Of course, the two types of excitations can 
be combined to get mote exotic ones. So far as the loops are concerned, v = U is 
nothing special. Therefore, the model for any U (except zero) belongs to the same 
universality class as the king model. 

If u=O,  then these edges of PD are absent. By removing the two coordinated 
vertices, we get a dimer problem on the original lattice 2' with dimer activity x = u2 
for the transverse and one for the vertical (i.e. z )  bonds [2]. This particular dimer 
problem has no loops and involves only the directed polymer type excitations. It has 
been studied in the past in connection with biomembrane phase transitions [6] ,  and 
is known to belong to the same universality class as the ferroelectric five vertex model 
on diamond type lattices [7]. 

The critical behaviour of the vertex model is known exactly [7]. The system is 
frozen in the ground state in the low temperature x < x, = $. The model is anisotropic 
with two different length scales, & and Ell, in the transverse and vertical directions 
( [ , - P I ,  i=L, l / ,  t-(x-x,)).Theexponents f o r d < 3  are 

1 ~ = ( 3 - d ) / 2  1 - 2  VI! = 1 (1) --I 

with d = 3 as the upper critical dimension (UCD). The king model, in contrast, is 
isotropic, has U C D = ~ ,  and has d dependent exponents for d <4. It, therefore, belongs 
to a different universality class. Hence the existence of the loop mediated crossover 
in any dimension. 0 

Crossover. Our focus is on the crossover behaviour around the critical point of the 
v = 0 vertex model. The free energy can be written in a scaling form 

as v -f 0 and t + 0. We like to determine the crossover exponent 0. A positive @ indicates 
that the loops are relevant, and is expected to change the critical behaviour. 

Adopting the procedure of [9], we expand the partition function for non-zero U in 
the low temperature phase as 

where W'"' is the nth derivative of the scaling function. (Note that the partition 
function of the vertex model in the low temperature phase is one.) In the low temperature 
phase, configurations with single dislocations are not important because they cost 
infinite energy. The dislocations always occur in pairs, as indeed seen explicitly in the 
exact two-dimensional solutions [2]. These finite energy excitations destroy the frozen 
behaviour of the vertex model. Consequently, the first non-trivial term is the U' term. 

The U' term, Znz, in the above expansion involves configurations where two directed 
polymers are created at some point and they diffise or execute random walks avoiding 
each other until they meet and vanish after N steps. All such configurations for all 
possible values of N contribute to Zu2. Accordingly, we require the restricted partition 
function for two directed polymers, ZR2(r)  tied at origin at one end and at transverse 
coordinate r at the other end. We assume (proved below) a power law decay ZR,Jr)  - 
N-'&?. In a continuum limit, Zuz comes from an integration of ZR,2(r) over the 
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( d  - 1)-dimensional r coordinates and integration over N. Rescaling r by 
by &, we obtain 191 

and N 

(4) zD2.- cf- 1 s;l -qR1 - t- I +QW-W- 1112 

using the exponents from equation (1). Comparing with the t dependence of the U' 
term of equation (3) with (I = ( 3  - d ) j 2 ,  we obtain 

0 = (d  + 1 -$R2) j2 .  ( 5 )  

We obtain t)R.2 in a continuum limit by a path integral approach. 

Continuum limit. Taking a continuum limit for the Dolymers, two interacting directed 
polymers can be studiedk the path integral approach bythe dimensionless Hamiltonian 
[8,101 

H2 =' dzr:)' + vo loN dz S d  (r, (z) - r,(z)) 
2 i i l  0 

where r , ( z )  is the ( d  - 1)-dimensional coordinate of a point at z on the contour of the 
ith chain. The first term is the elastic energy, taking care of the connectivity of the 
chainst. The viciousness of the walkers is simulated in the second term by a 8-function 
interaction at the same z coordinate with uo>O. For the non-interacting case, t)R2= 
d - 1, but interaction changes it to $K2 = d - 1 + vR,2. The anomalous part qn,2 comes 
from the renormalization group approach [ll].  

The polymer partition function of interest is 

z R z ( r ) = J  9 r  r=1,2 n [ 8 d ( r , ( 0 ) ) S d ( r j ( N ) - r ) l e - H z  (7) 

9 r  standing for the sum over all paths. We evaluate ZR,%(r) by a perturbation expansion 
in the coupling constant U,. Some of the diagrams are shown in figure 2. It is possible 
to resume the series and get the results. We, however, find it more illuminating to use 
a renormalization group approach, which links the origin of the anomalous part of 
the exponent $R,2 to the multiplicative renormalization constant for the partition 
function. We will skip the details of the evaluation of the diagrams, and quote the 
series from [ l l ] :  

where uo = uoL' ( E  = 3 - d and L an arbitrary length scale) is the dimensionless coupling 
constant and, for simplicity, r is taken at origin. 

Figure 2. Diagrams for ZR2. Solid lines are the polymers and dotted lines are the inter- 
actions. See I7.10, I I] for rules IO evaluate these. 

t Note that d of this paper is d + l  of [IO, I l l .  
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Each term of the perturbation series shows a divergence at d = 3 at which U, is 
dimensionless. The removal of divergences requires (i) a renormalization ofthe coupling 
constant uo= u[l - u/(2me)]-’ [lo], and (ii) an overall multiplicative renormalization 
constant RKz(u) .  It is shown in [113 that RR2(u) = [ l -  u/(Zm)]-*,  so that ZR,2[r = 
RR,J u)ZK2 is well defined. RKz( U) is known exactly. A standard renormalization group 
argument then gives vKz as 

where U* = 2me is the fixed point of p ( u )  = L(Ju/JL) = us[l - u/(2m)]  [lo]. Putting 
everything together, we get 

@R,2 = (10) 

for all d < 3. 
The crossover exponent then follows from equation ( 5 )  as 

B =(d  - 1)/2. (11) 

Since vR,2 is known exactly, this formula for 0 is also exact. It agrees with the exact 
result of [Z] and the random walk argument of [9] for d =2. 

In the context of two-dimensional commensurate-incommensurate transitions, 
where the lines are the fluctuating domain walls, it is possible to have more than two 
walls meeting at the dislocation points. For two dimensions, the random walk argument 
of Huse and Fisher [9] shows that dislocations for p walls are relevant if p >  A. A 
similar question can also be asked for d>2.  It would involve the decay exponent 
@Kp for p directed polymers. We have shown elsewhere [ll] that @R,p=  

p(d-1)/2+(5”)~+0(~?).  This exponent gives the critical numberp to O(E) as 4-E .  
In other words, even though p = 3 dislocations are not relevant in two dimensions, 
they do induce a crossover for d > 2. To which class the model crosses over to is yet 
to be seen. 

In summary, we proposed a model that shows a crossover from anisotropic d- 
dimensional five vertex models to the isotropic d-dimensional king universality class, 
and the crossover is mediated by loops involving reunion of two vicious walkers. Such 
a crossover in the three-dimensional king model has not, hitherto, been recognized. 
We also show that dislocations involving three walkers can induce a crossover in the 
vertex model for d>2,  though to which class remaining open. Such three walker 
reunions are irrelevant in two dimensions. The crossover exponent to the king class 
is determined to be 0 = (d  - 1)/2 (for d s 3). This is an exact result and agrees with 
the known result for two dimensions [2,9]. 

References 

[I] Blote H W J and Hilhorst H I  1982 J. Phys. A: M+h. Gen. 15 L631 
1.21 Bhattachajee S M 1984 Phys. Reu. L e a  53 1161 
131 Fisher M E 1984 J. SfaI. Pkys. 34 667 
[41 Nagle J F, Yokoi C S 0 and Bhattacharjee S M 1989 Phase Transifions and Crifical Phenomena vol 

[5] Fisher M E 1966 I. Mafh. Phys. 7 1776 
[6] Bhattachajee S M et a1 1983 I. Slat. Phys. 32 361 

13, ed C Domb and J Lebowitz (New York Academic) 



~ 4 2 8  Letter to the Editor 

[7] Bhattacharjee S M and Rajasekaran J J 1991 mys. Rey. A 44 6202 
[8] Nelson D Rand Seung H S 1988 Phys Rev. B 39 9153 

[9] Huse D A and Fisher M E 1984 Phys. Rev. B 29 U 9  
Nelson D R 1988 phys. Rev. Lett. 6Q 1973 

[lo] Rajasekaran J J and Bhattachajee S M 1991 J. Phys. A: Math. Gen. 24 L371 
[ I l l  Mukherji S and Bhattacharjee S M Reunion of vicious walkers: Results from &-expansion Preprint 


